The Power of the Curve Stat-Ease DOE Summit - Oct 5, 2022 Presented by Arved Harding

Eastman

Who is Arved J. Harding, Jr.?

Statistical Consultant at Eastman >34 Years

Work at Kingsport, TN site
Senior Statistical Associate
Native of Wise, VA
Currently in Blountville, TN
Family Man

$$
\text { Wife }+2 \text { boys }
$$

Active volunteer and leader in the Northeast TN Section of the
American Society for Quality (ASQ)

Current assignment:
Advanced Interlayers Performance Films

Graduate of UVA College at Wise B.S. in Math, 1985 + High School Math Teacher Certification
M.S. in Statistics, VA Tech, 1988

Have supported many organizations within Eastman, including research and development, technical service, manufacturing and analytical testing in the fields of Polymers, PVB Interlayers, Performance Films, Cellulose Esters, Coatings, Adhesives and more.

Instructor for internal Eastman Statistics and Six Sigma courses

A global industry leader

- Fortune 500 specialty materials company with 2021 revenue of ~\$10.5B
- Global manufacturer and marketer of advanced materials and specialty additives
- Operates four business segments
- Global team of $\sim 14,000$
. Serving customers in >100 countries

A legacy of innovation and growth

A LEGACY THAT bEGAN MORE THAN A CENTURY AGO

"Throughout our history, Eastman men and women have focused their sense of purpose, innovative spirit and drive for excellence to enhance the quality of life in a material way."

- Mark Costa

Board Chair and Chief Executive Officer

Enhancing the quality of life in a material way
EתSTMתN

Designed Experiments Come in Various Shapes and Sizes

Factorial and Fractional Factorial

Response Surface Design

3 Factor Central Composite

15 runs + replicates

Responses for Experiments Also Come in Various Shapes and Sizes

- A single measurement on a sample
- An average of several measurements on a sample
- An average of several samples taken at the same conditions
- A standard deviation of several measurements or several samples at the same condition
- Censored data (Examples: drop height, when the sample does not break at that height and test values below the detection limit)

Responses for Experiments Also Come in Various Shapes and Sizes

- A curve
- Stress-Strain Curve - take the stress at a given strain level
- Response over time - take the response at a given time or at the end of x hours
- Viscosity as temperature rises or falls - take the response at a given temperature, or the temperature at a given viscosity as the response
- Frequency response curve in sound- use the
 value at a certain frequency as the response
- Dose-Response curves in drug development use dose to achieve a certain \%response

The Power of the Curve

Experimentation to determine the effect of two processing temperatures on the Stress@ 20 Strain.

3×4 factorial with 3 complete replicates

Acknowledgements

- Stijn Van de Vyver - Eastman Chemist
- Veerle De Praeter - Eastman Application Service Lab Technician
- Hank Anderson - Stat-Ease
- Martin Bezener - Stat-Ease
- Derek Harding - Eastman Data Scientist

The Power of the Curve

- Original response of interest: Stress at a Strain of 20\%
- What if we could develop a model to understand how the two processing temperatures affect the Stress/Strain curve?
- What if we could understand which aspects of the curve are most affected by which variable?
- What if we could predict the Stress/Strain curve anywhere inside our design space?
- And the predictions will be within +- 0.005 of the actual stress value for the conditions we have.

Process of Analysis

- Decide what curve to fit for each run
- Fit each run and save the parameters
- Fit the parameters as a function of the variables in the study
- Decide what the optimum combination of the parameters are
- Draw a curve with the optimum set of parameters

What curve should we fit?

To make this decision use process knowledge, literature searches, trying different fits.

Sometimes the non-linear parameters of the model can be scientific information, such as rates and asymptotes that mean something.

If nothing seems right, spline fits are a great option in software today, but may not provide as much scientific insight as non-linear models.

Functional data analysis (FDA) is a branch of statistics that analyzes data providing
information about curves, surfaces or anything else varying over a continuum.

What curve should we fit?

Prediction Model

Stress $=\mathrm{a}-\mathrm{b}$ * $\operatorname{Exp}\left(-\mathrm{c}^{*}\right.$ Strain $)$
a = Asymptote
-b = Scale
-c = Growth Rate
Starting Point $=$ Asymptote + Growth Rate Starting point $=$ Stress at Strain $=0$.

36 curves

Useful Nonlinear Models in Python • Juliano Garcia (robotenique.github.io)

The Power of the Curve

Experimentation to determine the effect of two processing temperatures on the Stress@ 20 Strain.

3×4 factorial with 3 complete replicates

Parameter Estimates Obtained for all 36 curves

		Factor 1	Factor 2	Response 1	Response 2	Response 3	Response 4	Response 5
Group	Run	a:Temp 1	B:Temp 2	Asymptote	Scale	Growth rate	Starting Point	Stress at 20\% Strain
		${ }^{\circ}$ C	${ }^{\circ} \mathbf{C}$					
1	1	85	40	0.0841	-0.0767	-0.0865	-0.0024	0.0705
1	2	85	70	0.0936	-0.0956	-0.0683	0.0253	0.0692
1	3	85	80	0.0787	-0.0804	-0.0821	-0.0034	0.0631
1	4	85	100	0.0644	-0.0675	-0.0929	-0.0286	0.0539
2	5	95	40	0.0631	-0.0478	-0.1025	-0.0393	0.0570
2	6	95	70	0.0610	-0.0628	-0.0826	-0.0215	0.0490
2	7	95	80	0.0548	-0.0547	-0.0953	-0.0405	0.0467
2	8	95	100	0.0388	-0.0419	-0.1238	-0.0850	0.0353
3	9	105	40	0.0428	-0.0256	-0.1324	-0.0896	0.0410
3	10	105	70	0.0364	-0.0340	-0.1218	-0.0854	0.0334
3	11	105	80	0.0340	-0.0329	-0.1125	-0.0785	0.0306
3	12	105	100	0.0263	-0.0293	-0.0992	-0.0729	0.0223

Estimates for only 12 curves shown.
Notice split plot structure of the data table with groups of Temp 1. And Temp 2 not randomized.

An Outlier?

Fit Curve Set=36

Model Comparison

Model
AICc ^ BIC MSE
RMSE R-Square Exponential 3P —— $-832.5864 \quad-824.7035 \quad 5.8543 \mathrm{e}-6$ 9.7572e-8 $0.0003124 \quad 0.9984995$ Plot

Exponential 3P

Parameter Estimates

Parameter Estimate Std Error Chis Wald Crob > $\begin{gathered}\text { Phisquare }\end{gathered}$ | Asymptote | 0.031464 | 0.0001715 | 33663.97 | $<.0001$ * | 0.0311279 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}\text { Scale } & -0.031383 & 0.0001663 & 35605.987 & <.0001 \text { * } & -0.031709 & -0.031057\end{array}$ $\begin{array}{llllllll}\text { Growth Rate } & -0.13344 & 0.0021347 & 3907.3199 & <.0001 \text { * } & -0.137624 & -0.129256\end{array}$

How good do the models fit? An Example.

Temp 1=85, Temp $2=70$ Runs 2, 14, 26

Exponential 3P

Parameter Estimates						
Parameter	Estimate	Std Error	Wald ChiSquare	Prob > ChiSquare	Lower 95\%	Upper 95\%
Asymptote	0.0935751	0.0007694	14792.662	$<.0001$ *	0.0920672	0.0950831
Scale	-0.095567	0.0006758	19999.459	$<.0001 *$	-0.096892	-0.094243
Growth Rate	-0.068286	0.0010246	4442.0288	$<.0001^{*}$	-0.070294	-0.066278

Exponential 3P

Parameter Estimates						
Parameter	Estimate	Std Error	Wald ChiSquare	Prob > ChiSquare	Lower 95\%	Upper 95\%
Asymptote	0.0922522	0.000976	8933.5839	$<.0001$ *	0.0903392	0.0941652
Scale	-0.093731	0.000853	12074.69	$<.0001^{*}$	-0.095403	-0.09206
Growth Rate	-0.069947	0.0013729	2595.8254	$<.0001^{*}$	-0.072638	-0.067256

Exponential 3P

Parameter Estimates

Parameter	Estimate	Std Error	ChiSquare	ChiSquare	Lower 95\%	Upper 95\%
Asymptote	0.0908299	0.0008427	11617.334	<.0001 *	0.0891782	0.0924816
Scale	-0.091724	0.000735	15572.954	<. 0001 *	-0.093164	283

How good do the models fit? An Example.

Residual by Predicted Plot

Temp 1=85, Temp $2=70$
Runs 2, 14, 26

A little systematic error left, but the predictions are +- 0.0015. R-squared >0.99.

Relating the Exponential Parameters to One Another

Relating the Exponential Parameters to One Another

Relating the Exponential Parameters to One Another

A Great View of the Raw Data Table of Parameter Estimates

Modeling in Stat-Ease 360

- Used split-plot analysis approach.
- Base model was $\frac{\text { Soure }}{\text { Wholeplot }}$

B-Temp 2
aB
B^{2}
$a^{2} B$
$a B^{2}$

- Model was reduced as appropriate using backward regression.
- All models had R-squared >0.93 and R-squared adjusted >0.92
- Transformation were considered but not needed when adding the aB^{2} term.

Model Coefficients

Coefficients Table

p-value shading: $\mathbf{p}<\mathbf{0 . 0 5} 0.05 \leq p<0.1 \quad p \geq 0.1$

	Intercept	a	B	aB	a^{2}	B^{2}	$a^{2} B$	$a B^{2}$
Asymptote	0.0598908	-0.0242506	-0.00957755	0.0011293	0.00421981	-0.00866812	0.000681229	0.00579371
p-values		<0.0001	<0.0001	0.2867	0.0021	<0.0001	0.6957	0.0009
Scale	-0.0591525	0.0258346	0.00153807	-0.0027489	-0.00420093	0.0137787		-0.00474039
p -values		<0.0001	0.1290	0.0329	0.0076	<0.0001		0.0153
Growth rate	-0.090602	-0.0191023	-0.00495619			-0.0218372		
p-values		<0.0001	0.0005			<0.0001		
Starting Point	-0.0277879	-0.0405879	-0.0145747			-0.0311242		
p -values		<0.0001	<0.0001			<0.0001		
Stress at 20\% Strain	0.0496747	-0.0160782	-0.00818191	$-1.43812 \mathrm{E}-05$	0.00218338	-0.00320084		0.00222346
p-values		< 0.0001	<0.0001	0.9823	0.0560	0.0004		0.0301

In these models, hierarchy was followed so if a higher order term was statistically significant, then a lower order term is included regardless of its significance.

Objective

- Maximize the starting point parameters, as well as the stress at 20% strain.

	Number	Temp 1	Temp 2	Asymptote	Scale	Growth rate	Starting Point	Stress at 20\% Strain	Desirability
	1	85.000	58.043	0.090	-0.088	-0.073	0.014	0.070	0.913
	2	85.000	57.788	0.090	-0.088	-0.073	0.014	0.070	0.913
	3	85.000	58.451	0.090	-0.088	-0.073	0.014	0.070	0.913
	4	85.000	57.387	0.090	-0.088	-0.073	0.013	0.070	0.913
	5	85.000	58.991	0.090	-0.088	-0.073	0.014	0.070	0.913
	6	85.000	56.828	0.090	-0.088	-0.074	0.013	0.070	0.913
	7	85.000	56.363	0.090	-0.087	-0.074	0.013	0.071	0.913
	8	85.000	55.021	0.090	-0.087	-0.074	0.012	0.071	0.911
	9	85.000	54.500	0.090	-0.086	-0.075	0.012	0.071	0.911
	10	85.000	65.500	0.090	-0.089	-0.071	0.014	0.069	0.902
	11	85.000	46.692	0.087	-0.081	-0.081	0.005	0.071	0.887
	12	85.000	45.983	0.087	-0.081	-0.082	0.005	0.071	0.884
	13	85.000	45.483	0.087	-0.080	-0.082	0.004	0.071	0.881
	14	85.000	74.500	0.087	-0.088	-0.073	0.010	0.067	0.860
	15	85.000	80.500	0.083	-0.085	-0.076	0.004	0.064	0.814

Optimum Area

If the optimum is in a corner or edge, the optimum is not in the corner or edge.

Optimum Parameters

Temp 1=85, Temp $2=70$
Runs 2, 14, 26

Starting point can be a little better at the new optimum.

Learnings

- Original response of interest: Stress at a Strain of 20\%
- By recognizing the power of the curve, we can learn a lot more than our original objective.
- With this new knowledge we now have power over the curve, and can change the shape, starting values, asymptote and stress @ 20\% strain, to what we want.

