Achieving robust processes via three experiment-design options (part 2)

Richard Williams on April 11, 2024

The goal of robustness studies is to demonstrate that our processes will be successful upon implementation in the field when they are exposed to anticipated noise factors. There are several assumptions and underlying concepts that need to be understood when setting out to conduct a robustness study. Carefully considering these principles, three distinct types of designs emerge that address robustness:

I. Having settled on process settings, we desire to demonstrate the system is insensitive to external noise-factor variation, i.e., robust against Z factor influence.

II. Given we may have variation between our selected process settings and the actual factor conditions that may be seen in the field, we wish to find settings that are insensitive to this variation. In other words, we may set our controlled X factors, but these factors wander from their set points and cause variation in our results. Our goal is to achieve our desired Y values while minimizing the variation stemming from imperfect process factor control. The impact of external noise factors (Z’s) is not explored in this type of study.

III. Given a system having controllable factors (X’s) and non-controllable noise factors (Z’s) impacting one or more desirable properties (Y’s), we wish to find the ideal settings for the controllable factors that simultaneously maximize the properties of interest, while minimizing the impact of variation from both types of noise factors.

Read part 1 here.

Design-Type II: Robustness against variation in our set points for process factors

In this type of analysis, we aim to find the process factor settings that satisfy our requirements and be the most insensitive to expected variations in those settings. For example, we may decide baking temperature and baking time impact the rise height of bread, per the results of a lab-scale DOE. But we anticipate that on an industrial scale, changes in conveyor speed could impact baking time and perhaps that large ovens may cycle in temperature, giving rise to variation.

We can use propagation of error (POE) in our time-temperature DOE to find the sweet spot where such fluctuations in process factors yield the smallest amount of variation in results, i.e., the most robust settings to for success in the field.

For additional detail on using POE as a tool for robust design see Pat Whitcomb’s 2020 Overview of Robust Design, Propagation of Error and Tolerance Analysis.

Read part 3 here.

Read a follow-up by Mark Anderson here.

Return to blog