Design of experiments (DOE), being such an effective combination of multifactor testing with statistical tools, hits the spot for engineers and scientists doing industrial R&D. However, as documented in my white paper on Achieving Breakthroughs in Non-Manufacturing Processes via Design of Experiments (DOE), this statistical methodology works equally well for business processes. Yet, non-manufacturing experimenters rarely make it beyond simple one-factor-at-a-time (OFAT) comparisons known as A/B splits—most recently embraced, to my great disappointment, by Harvard Business Review*. But to give HBR some credit, this 2017 feature on experimentation at least mentions “multivariate” (I prefer “multifactor”) testing as a better alternative.
To see an illuminating example of multifactor testing applied to marketing, see my April 21 StatsMadeEasy blog: Business community discovers that “Experimentation Works”.
Another great case for applying multifactor DOE came from Kontsevaia and Berger in a study published by the International Journal of Business, Economics and Managemental**. To maximize impressions per social-media posts, they applied a fractional two-level design on 6 factors in 16 runs varying:
A. Type of Day/Day of the week: Weekend (Sat, Sun) vs Workday (Thu, Fri)
B. Social Media Channel: LinkedIn vs Twitter
C. Image present: No vs Yes
D. Time of Day: Afternoon (3-6pm) vs Morning (7-10am)
E. Length of Message: Long (at least 70 characters) vs Short (under 70 characters)
F. Hashtag present: No vs Yes
The multifactor marketing test revealed the choice of channel for maximum impressions to be highly dependent on posts going out on weekends versus workdays. This valuable insight on a two-factor interaction (AB) would never have been revealed by a simple OFAT split.
Design-Expert® software makes multifactor business experiments like this very easy for non-statisticians to design, analyze and optimize for greatly increased returns. Aided by Stat-Ease you can put DOE to work for your enterprise and make a big hit career-wise.
*“Building a Culture of Experimentation”, Stefan Thomke, March-April, 2020.
**“Analyzing Factors Affecting the Success of Social Media Posts for B2B Networks: A Fractional-Factorial Design Approach”, August, 2020.