By sizing experiment designs properly, test and evaluation (T&E) engineers can assure they specify a sufficient number of runs to reveal any important effects on the system. For factorial designs laid out in an orthogonal matrix this can be done by calculating statistical power. However, when a defense system behaves in a nonlinear fashion, then response surface method experiment (RSM) designs must be employed. The test matrices for RSM generally do not exhibit orthogonality, thus the effect calculations become correlated and degrade the statistical power. This in turn leads to inflation in the number of test runs needed to detect important performance differences that may be generated by the experiment. A generally acceptable alternative to sizing designs makes use of fraction of design space (FDS) plots. This article details the FDS approach and explains why it works best to serve the purpose of RSM experiments done for T&E.
This article provides insights on how many runs are required to make it very likely that a test will reveal any important effects. Due to the mathematical complexities of multifactor design of experiments (DOE) matrices, the calculations for adequate power and precision are not practical to do by 'hand' so the focus is kept at a high level--scoping out the forest rather than detailing all the trees. By example, reader will learn the price that must be paid for an adequately-sized experiment and the penalty incurred by conveniently grouping hard-to-change factors.
Due to operational or physical considerations, standard factorial and response surface method (RSM) design of experiments (DOE) often prove to be unsuitable. In such cases a computer-generated statistically-optimal design fills the breech. This article explores vital mathematical properties for evaluating alternative designs with a focus on what is really important for industrial experimenters. To assess “goodness of design” such evaluations must consider the model choice, specific optimality criteria (in particular D and I), precision of estimation based on the fraction of design space (FDS), the number of runs to achieve required precision, lack-of-fit testing, and so forth. With a focus on RSM, all these issues are considered at a practical level, keeping engineers and scientists in mind. This brings to the forefront such considerations as subject-matter knowledge from first principles and experience, factor choice and the feasibility of the experiment design.
BOOK REVIEW: This book provides guidance on the construction of experiments, including sample size calculations, hypothesis testing, and confidence estimation.
Given the push for Quality by Design (QbD) by FDA and drug agencies worldwide, statistical methods are becoming increasingly vital for pharmaceutical manufacturers. Response surface methods for DOE provide powerful tools to manage the impact of multiple factors and their interactions.
Given the push for Quality by Design (QbD) by the US FDA and equivalent agencies worldwide, statistical methods are becoming increasingly vital for pharmaceutical manufacturers. Design of experiments (DOE) is a primary tool because “it provides structured, organized method for determining the relationship between factors affecting a process and the response of that process." Tolerance intervals (TI) verify that the design space will be robust for meeting the manufacturing specifications on every individual unit, not just on average.
Design of experiments (DOE) is a powerful technique for process optimization that has been widely deployed in almost all types of manufacturing processes and is used extensively in product process design and development. There have not been as many efforts to apply powerful quality improvement techniques such as DOE to improve non-manufacturing processes. Factor levels often involve changing the way people work and so have to be handled carefully. It is even more important to get everyone working as a team. This paper explores the benefits and challenges in the application of DOE in non-manufacturing arena.
Statistical methods are becoming increasingly important for the pharmaceutical industry. The FDA and other regulatory and standard-setting organizations are moving swiftly to establish Quality by Design (QbD) guidance relevant to the needs of pharmaceutical manufacturing. The FDA suggests the use of design of experiments (DoE) because it provides a structured, organized method for determining the relationship between factors affecting a process and the response of that process.
To accelerate their product development, Z Corporation tooled up their engineers with the knowledge and software to do statistical design of experiments (DOE). The company developed a procedure by which every factor with a reasonable chance of affecting product performance is systematically and simultaneously evaluated via these controlled experiments.
Olive oil, an important commodity of the Mediterranean region and a main ingredient of their world-renowned diet (see sidebar), must meet stringent European guidelines to achieve the coveted status of "extra virgin." Oils made from single cultivars (a particular cultivated variety of the olive tree) will at times fall into the lower "virgin" category due to seasonal variation. Then it becomes advantageous to blend in one or more superior oils. This is a great case to become acquainted with the tools of mixture design for optimal formulation.