Updated version for 2024. Originally published in 2010.
The statistical design of experiments is an essential ingredient of successful product development and improvement, and provides an efficient and scientific approach to obtaining meaningful information. In contrast to traditional vary one-factor-at-a-time (OFAT) experimentation, variables are changed together, permitting evaluation of interactions. Standard texts give details about the construction of specific test plans, such full and fractional factorial, and response surface designs, and the analysis of the resulting data. This article gives a brief overview. The focus here is on the fundamental elements of experimental design: defining the purpose and scope of the experiment, differentiating between alternative types of experimental variables, understanding the underlying environment and constraints, and conducting stage-wise experimentation. Brief discussions dealing with the statistical analysis tools, multiple response variables, and some historical background are also provided.